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variations of the surface current induced oh'a fibite length cylindrical
scatterer very near a perfect ground. This solution is compareA to previous
solutions based on filamentary currents. The results givi clear indications as
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FOREWORD

This report is Part II of the Final Technical Report of a study

being conducted by the Electrical Engineering Department under the

auspices of the Engineering Experiment Station of Auburn University.

This technical report Is submitted toward fulfillment of the require-

[ ments prescribed in AFOSR Contract F44620-76-C-0054.

I
)I

Ii
~\

i.V.



I

TABLE OF CONTENTS

I . INTRODUCTION . . . . . . . . .. . . . .. . . . ..,. .. .

11. THEORY . . . . . . . . . . . . . . . . . . .3

Derivation of Integral Equations

Application of the Moment Method

Application of the Singularity Expansion Method

Approximations and Limitations

II1. NUMERICAL RESULTS. ..... ........... . . . .42

1, REFERENCES .............. ...... . . . . . . . . . . . . . . .57

I'I
II

i,,I

qi

J-- ., ,

S. .. ..... i ...... .. . . .. !...... ... .... .i ..... .. ..- -........ .. ..... ...-- -.. ................. ........- -....... .. ..-- -. . . . .... .......-- -... . ..-i-..... .... .....---



I I. INTRODUCTION

Numerous investigators have studied the electiouLwjnetic interactions

of thin cylinders over a perfectly conducting ýround plane illuminated

by a distant source [1-6]. There have also been numerous studies of

currents induced on infinite cylinders or thin wires near a finitely

conducting ground plane [7-9]. In this study a perfectly conducting

, )cylinder of finite length near a finitely conducting ground plane is

treated by the Singularity Expansion Method (SEM).

A Pocklington type Integro-differential equation is formulated for

the current induced on the thin cylinder and its image where the current

on the image is related to the current on the object by the ratio of the

complex reflection coefficient for the appropriate angle of incidence and

polarization involved. In a recent study by Sarkar and Strait [10) it

was shown that the above method, termed "reflection method" gave results

in the real frequency domain within 10% of the exact Somerfeld formulation

for a horizontal electric dipole as long as the dipole was at least
t(0.25/hre)al from the ground plane. The advantages ofhe e reflection

method are speed of computation and interpretation of results.

iiUsing this "reflection method" in the integro-differential equation,

this study determines some of the effects of ground conductivity and

permittivity upon the natural resonances and natural modes of a thin

finite length cylindrical scatterer above a lossy half spce. These

effects are presented In terms of a family of trajectories in the complex

1•r••~,
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I frequency plane as a function of the electrical and geometrical parameters

S•which define the problem.
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!I I. THEORY

DERIVATION OF INTEGRAL EQUATIONS

jl In Figure 2-1 an Infinitely thin-walled, perfectly conducting,

right circular cylinder Is shown. As indicated the cylinder is of

length L, radius a, and height h above an infinite, finitely conducting

ground plane. The system, consistitng of the cylinder, ground plane,

and incident field of electromagnetic radiation is defined in terns of

Sa combined cartesian and cylindrical coordina.,e system. The incident

electromagnetic field propagates in a general direction described by the

I angle 0e with respect to the z-axis. The current induced on the

cylinder by the incident wave is to be determined.

Solution of the above defined problem may be greatly facilitated

by the use of image and reflection theory. Applying image theory, the

cylinder, incident TEM plane wave, and finitely conducting ground plane

are to be replaced by the object cylinder, the image cylinder, and two

free space TEM plane waves as shown in Figure 2-2. Reflection theory

can be used to show that the currents on the image are related to the

currents on the object by the ratio of the complex-reflection coefficient

for the appropriate angle of incidence and polarization of the incident

i I; field [11"-14]. The reflection method cannot be expected to give an

exact solution as the cylinder approaches the ground plane [10],
1~ (14-16].

Two coordinate systems are defined by Figure 2-3, the object and

the image coordinate system Indicated by the subscripts "0" and "1"

j 3
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respectively. Note that since the cylinders are identical and parallel,

z and z axes are not necessary. Let the "incident field" be defined

as the field plus its reflection from the ground plane. The surface

currents induced on the abject and its image are considered as source

currents radiating In free space [7]. The free space Green's functions

may be used to compute the scattered field at an arbitrary field point.

In terms of the geometry as defined by Figure 2-3, appropriate

magnetic vector potentials for the object and image are:

o magnetic vector potential of the object in object

coordinates

I(K-t) = magnetic vector potential of the image in image

coordinates

general field point in space measured from the object

coordinate system

R same general field point in terms of the image

[ tcoordinates

Rol =a general source point on the object cylinder with

respect to its coordinate system

m a general source point on the image cylinder with
respect to its coordinate system

The magnetic vector potential of the object is expressed as

if '0 ] (%')G0 (K0 W')ds0  (2-1)

fs0

7



Primed coordinates indicate source points, unprimed coordinates field

points;

SGO(NO; ) - free space Green's function in object

coordinates

O surface current density radiating in free space.

In general the free space Green's function has the form

( -Y1Wo -W01
Go(]OgO') - (2-2)

The temporal variation cst has been suppressed, where

s a + Jw, (2-3)

The complex frequency variable, with

Y - s/c (2-4)

c a the speed of light in free space.

By the superposition of a cylindrical coordinate system on the

I cartesian coordinate system of Figure 2-3, the following may be shown:

I- o'1 "P 2 + P'- 2p 0o 0 'cos(to -"o')

2]+ (z - z') (2-5)

where, Pol a, a the radius of the cylinder. Therefore, ~

8.:•i,'

11'..T
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- X0(p0,qi0 z) .O L 2 (Poo',Z') •

i G0(p 0 z 0z ,* 0 ,z ' )ado 0  dz' (2-6)

Reduces to
I 

L 2v -YR1

T*P.OZ I-J f ~',z) -ado 'dz' (2-7)
"0 0

where

R {PO2 + a2  " 2POa cos(o0  - 0') + z " z') 211 (2-8)

Assuming no circumferential current components,

o , "o( o', "-);Z , (2-9)

I Equation (2-7) reduces to

A0(p,*3z *L 21r -yR1
.)~~ % .(Po~o "N " VI f 0 ZoI'") - -° o• '

TV(K 0 0 .L~ado 0dz'.
0 o (2-10)

A similar process yields

(p1 ,*~.z) ~ L 2w (*Yz
A. A (Pi* *z) 0 K 2 ad dz' (2-11)
z 00

where

Ii 9

' 
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! R2"It " i l [Pi + a- 2pia cos(Oi 01; + z-,)2]•

(2-12)

[ The circumferential variations of the axial current on an infinitely

long cylinder over a perfectly conducting ground plane in a static mode

has been derived by Taylor ( 171. Using Taylor's equation,

10(z')

21a Y40*6* (2-13)

whe re

fo((06) 1 + (a (2-14)

10 (z') = axial variation of object surface current.

As h becomes large, the circumferential variation of the axial current

becomes uniform and thus (2-14) reduces to

l-T- az, (2-15)

li similarly

"•') • W) az, (2-16)

The magnetic vector potentials may now be expressed as

L 2w 1o(z,) r-YR
A09#z) *i f f I o&dodzOzO''.

'ft 10.
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L 1

'I-I

A) V0 L 2 I 1 (z ) -YR2A f 1 -,, Ta,'d. (2-18)
0 0

Let the general field point of Figure 2-3 be located on the object

cylinder. With this restriction the distance R2 may be calculated in

tems of the object coordinate system; see Figure 2-4. From the law

of sines,

P, sin*t a sin a sin #o (2-19)

and from the law of cosines,

24ah cos h (2-20)

Thus when A1 is evaluated on the object surface,

(P [a2 + 4h 2 + 4ah cos #03h (2-21)

and
Sa stin tO

[ * sin-' s . (2-22)

[a 2 + 4h + 4ah cos 4.3

Note when i is evaluated on the surface of the object

PO a. (2-23)

With the field point on the object cylinder (2-17) and (2-18) may be

written as

11 .;.

8 '.4'
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L 2O 1(') 2wYR 11. Wf I
A-z(#oZ) 00 1v ado dz (2-24)

0 0

i R2 - [2a2 +42 + a op +0 "z 2 +4h2 a o 0I

R1  s(2a t -2a t'o+( z - z()4 (Z--2)

[2a 0' (2-25

IA "o1) 2

A (409stn"1 - r-3 .did (2-26)R2  [2a+4h + 4ahcos4 0 -2[a + 4ah cos 0 1

8Cos(# 1 - *i' + (z - Z') 2: (2-27)

#i sin' 02+4 4 h O J (2-28)

As stated earlier, the currents on the object and image are related

by the complex-reflection coefficient for the appropriate angle of

incidence and polarization involved. If the cylinders are viewed as

I consisting of a large number of horizontal dipoles the problem of

reflection reduces to that of a horizontal dipole above a finitely

conducting ground plane. As pointed out by Jordon [14], in a plane

II parallel to the axis of the dipole the electric field is parallel to

the plane of incidence, vertical polarization. In a plane perpendicular

to the axis of the dipole the electric field is perpendicular to the

plane of incidence, horizontal polarization. The reflection coefficients

for horizontal and vertical polarization, as derived by Jordan 04], are

• respectively: 13

il



12

sin [(+c +x) CosRh Cr (2-29)
h 2] ~ sin ++ [(Er + X) - Cos ]

R r + x)sin * - ['r + x) -cos2  (2-30)

Cr relative permittlvlty of earth

v conductivity of earth

( o -free space permittivity.

SWhen the plane of incidence is neither in a plane parallel or perpendicular

to the axt of the dipole a combination of vertical and horizontal

reflection coefficients must be used. The reflection coefficient for

I !this case is given by

I a Rh cos 0 - R. sin 0 .. (2-31)

I The minus sign comes from Jordon's assumed positive directions of

electric fields for the incident and reflected waves [14]. Figure 2-5

1 defines the geometry of the reflection coefficient. Since uniform

circumferential current has been assumed no generality will be lost

by restricting the field point of the object cylinder to lie along

[ the line *0. With this objective and image current related by -

U 14LU•

II ,,
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*l(z') RFIo(z') (2-32)

It will be necessary to express the reflection coefficient in terms of

the object coordinate system. With this objective in mind the angle

and 8 defined in Figure 2-5 can be expressed as functions of 00 and

z such that,Ir
tan- 2" & + cos #,'! (2-33)

(a2 sin2 #0 + (z - z1)2)l

and

I ~ ~ t""";an -, 6 (2-34)

Substituting for ' and 0 in equations (2-29), (2-30), and (2-31)

yields

- e + ... + 1
Rsi. a sin #6

+ (r + x) I r+ (a 2 sn 20 6 + (z Z')2)

1 L sin2
j (2-36)

[,(, Xr, +') I

S(Cr + X) + r!z + I asn# (z -z')

J i ('~r I sin t.,

Dropping the current subscripts of equation (2-32) the magnetic vector

potentials become

'~ 13



I

4 L 2w -yR1

A02(+o") f f f 14z -' ' ad6dz' (2-36)

1 2w -YR
Aiz( O f f RFI(zR) a022

The total field consists of the Incident and scattered field,

where the scattered field is that due to the current, I(z'). To insure

uniqueness the total field must satisfy certain boundary conditions

r" nc + Ts' (2-38)

The scattered field Is related to the induced current.s and charges by

irs(R) -- KS(¢3 - VS(K), (2-39)

where Ks (1) the total "scattered" magnetic vector potential

, a the total "scattered" electric scalar potential,

'which can be related to W. through the Lorentz gauge condition,

s(). "oos (2-40)
-1, 0` 05

Equation (2-41) becoies

X(M) -- (U . 1 A[V . . (2-41) IA.

17it



since y and c I/• i, y2  S2oC Then,

(KS Off) " V S(V -X J] (2-42)

On the surface of the object cylinder, the boundary condition is

nI. x T O, (2-43)

with n being the outward normal unit vector on the cylinder surface.

An equivalent representation of the boundary condition is

Einc ta sEta (2-44)

Sso so

w•hich means that the tangential components of the incident and scatteredI
fields must cancel on the object surface for boundary conditions to be

satisfied. With the above consideration equation (2-42) becomes

Einc n s S KSV(I) - Ksl (i)1 . (2-45)

since

SKos + Ai A0a+ A iZz (2-46)

L 2w -YR

JJ F I(z') 'R2 C

F0 -2.-ad4idz' (2-47)

18 0 r



I

Substituting (2-47) into (2-45) one arrives at

so
(2-48)

aRF~lZ' + w -E adi'dz'

00 0

Since

( 4 w r ) [0 - -v1vr) ] [ 7

2-s 1 2v(v.) .y2[i 9 v.)1"-- 1 " " 1 " I

- v(v.) - 2J (2-49)

[2-48] becomes
SL 2"1 .YR1I

-4we~s(E~ J)Y2]j ~d"4dzo EEnc If f z '} (• -

B " (�'0

The differential operator, [v(v.) - y2], In the above equation

reduces to

azy 19



since equation (2-50) has only a z component. Finally (2-50) reduces

to

12 ' $~b ir -YR1
-41COS(Ei J2 )_ Y) I~zs j a I adý'dz'""io Enc z " ý j" z R--,-

L R FI(ZI) fi YR 2
T + -- v- ad+ Idz' . (2-52)

The incident field as shown in Figure 2-2 can be expressed as

•inc " E0 exp[-Y(z cos a - x sin 0)]Ecos 0 ax + sin 0 a z

j -RyE expE-y(z cos e + x sin e)](cos 0 ax - sin e az)

(2-53)

where R is as defined in equation (2-30). The minus sign again comes

1 from assumed positive directions of electric fields for the incident

and reflected waves in the derivation of Rv 04 J. Since only the axial

component of the incident field is to be used,

i iE " E° exp[-Y(z cos 0 - x sin Olsin e

+ +RvE exp[-y(z cos e + x sin 0)]sin e. (2-54)

1 The axial component of the transmitted field is

20Bl



Eztran (1 R Rv)E 0 exp[-Y(z cos e - x sin e)3stn e (2-55)

To determine E the fields must satisfy the boundary condition

I Etn l~ t tan I (2-56)zt.,an Zinc •j
x - -h x - -h

Mhe incident field was defined to contain the direct and reflected

I field, therefore

S(1 - Rv)E 0 exp[-Y(z cos 0 + h sin O)]sin 0 -

E0 exp[-Y(z cos e + h sin O)]sin e +

RVE1 sin e exp[-Y(z cos e - h sin e)] (2-57)

j And upon simplification

1- -E0 exp[-y 2h sin 0]. (2-58)

Substituting (2-58) into (2-54), and evaluating E on the cylinder

axis (approximate kernel), instead of on its surface,

E Z E0 exp[-y z cos ejsin 6(1 - Rv exp[-y 2h sin e)]
inc

(2-59)

) As stated earlier we have restricted the field point on the

object to lie along the line 40 0. With this restriction

S- [2a2 - 2a2 coS(O0 - 40') + (z - z')2] (2-60)

1 21
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and

R2 - [2a2 + 4h2 + 4ah cos0 2(a2 + 4h 2 + 4ah cos 0 )

. a cos(t - + (z - z') 2) (2-61)

S.where

[82 + 2 + 4ah cos-62)

Reduces to

r, R1  000 - r2a2 (l - cos *o) + (z - z.)2] (2-63)

I r2 * R2  [(2a2 + 4ah)( - cos + 2 +2 2h

(z- z)2 (2-64)

j Let

20I Cosý6 2 sin (2-65)

and d - diameter of the cylinder
- 2a (2-,66)

rSO 1 [i2 s 2-+ (z- )2] (2-67)

i#i
r 2 - [(d 2 + 8ah)sin2- + 4h2 + (z - z6)2) (2-68)

Also defining two functions

22



2w -yr 1

fo(z~z'"s) f f 5 rl ad*• (2-69)

and

0 "Yr
2

fi(z*z',s) 2 ad0' (2-70)
0 r2

Equation (2-52) becomes

-.4weoS[EtnCz m a2- ( L - (f + R ft)dz'

so 0
(2-71)

Where E Is given by equation (2-59). In order to better represent

the complex frequency dependence,

(-4!n c 5) (E sineCyz Cos 6[1 - R E.y2h sin 8
\I

• L

2wa y [fo(zZ, s) + R ft(z~z',s))dz'.

(2-72)

This is the integro-dlfferential equation to be solved for the unknown

induced current.

23



Application of the Moment Method

The integro-differential equation shall be cast into matrix form

suitable for a numerical solution; this process is called the method of

mements 09, 20). 21 -22). The portion of the cylinder at *0-0, "a thin

wire", is broken into N small zones, with the induced current on each

of these zones assumed to be constant. The integration over the "wire"

Is now dpproximated by the sum of integrals over N segments.

Current on the wire may be described by the function

I(z',s) an (S)) n(z') (2-73)

where

Sn a unknown coefficient of constant current on nth subsection

and

1 1, for zn < z < zn+l

Sn (ZW) e r(2-74)0, elsewhere

In Figure 2-6 is shown the geometry pertaining to the method of

moments. The boundary condition that current at wire ends be zero is

automatically satisfied by allowing the two end zones to extend past

the surface of the cylinder. Zone length, match points, and end points

are given respectively by

S- I/(N-l) - length of a zone (2-75)

N (M-)A, M a l-,2,...,N (2-76)

Zn w (n-3/2)A, n • 1,2,...,N+l (2-77)

24
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where L - length of wire

N - number of zones.

With current on the wire expressed as a pulse function, the integro-

differential equation (2-72) may be written as

(-4Ocos) IED sin e"yZCoSo[l-Rvy2hsine]

zn+l 2
1 a.- I2 [Fo(zzz,s)-RFFI(zzo,s)]dz,.

n n (S\ Ra- /;Tnz

(2-78)

This equation is to be satisfied at discrete match points, these points
being described by equation (2-76). Derivatives in equation (2-78) will

be approximated by a finite difference technique, that is

Sd2F 1 [(F(z + Az) - 2F(z) + F(z - Az)]. (2-79)

1 Using (2-79) in (2-78) yields

(-4Ocos) ED sin e C (1 - Rv e"Y2hsinO] -

zn+l

NEF(zs 1* 1 ( 2 2+2)F (zm,z',$)
n n IF1 n 1 l'o)(*

+ F0(zm ('.s) 2)S+ Fo(Zm.~1 ,z' ,s) - RF[F1 (zm+1 ,z' ,s)-(2+)F i(zm,z' ,s)

n
i+ F1 (zmlZ',S)] dz' (2-80)

26UI "
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I (- 1 a sin 0

where RF - [•-(A.+ 0]" a sin

1 + Ii7 j' [a sin 24po,+(Zm-zJ

A (- 1)+] (zm - z)A ~[~ )-+ i]½ (m2 (2-21)

(A-1) + 1 [a2sin2oe(zm-Z ]

A-c + _ (2-82)r sco

2h.a(1+cos* 0O
0 - ssn2*,* -tan"1 2sn&(zmczI)2 (2-83)S~[a2stn2¢o, +(Zm.z, )2]

This equation may be manipulated into the form

T(s) -(s)T(s) (2-84) ,

where a single bar represents a column matrix or vector and a double

bar indicates a square matrix.

Let V(s) - the source vector - [v J[!
where vm M the matrix elements of V(s)

(-4weCOS) )EO sin e 'M[l Rve y2hsine

m- 2,3,...,N-1; (2-85)

- the impedance matrix -* .

27Ut



I

where Zmn - the matrix elements of Z(s)

zn+l

Ft(zmjzZ',s)+Fi(Zm. 1 z',s)] jdz'

Sn - 2,3,. . .,N-l (2-86)
M a 2,3,...9,N-

and T(s) - the response vector -[n],

where i1 - the matrix elements of T(s)

S• a., unknown coefficient of constant current in the

nth zone n a 2,3,...,N-1 (2-87)

The unwieldy appearance of equation (2-86) ma•, be somewhat improved by

t defining two functions

n+l

H (zs)/ d*o'dz' (2-88)I!
with r, " [d2 sin 7" + (z,- ,') M (2-89)

zn2l 
-v

and H (zS) f 'dz' (2-90)M r2 Hd0

U 28



2 2 1 22
with r2 (d + 8ah)sin + 4h + (zm - z) J (2-91)

Now equation (2-86) may be redefined as

z " • I IHg (Z+lS)'(Y2a2+2)H 0  (zm's)

+ m n(Zm.1,s)-RF[HIM (zms)-(y2 2 +2)Ht n(zms)+ on Mn(Zmn

I,
+ Hi n( S (ZpS . (2-92)

When 0'-0* and z'-zm then r-O, (see equation (P-89)) thus the

integrand of H (z , s), see equation (2-88), will be singular. Tesche

0!3J provides methods of evaluating integrals of this type. Note that

the integrand of Hi (zms) is never singular due to the term 4h2 in
m nf equation (2-91).

At f0'-0*, the integrand of HOrn (zm+lS) is singular when Zm+l-Z',

where z < z' < zn+l Hence, at this point,

n n+lz _Zm1 < Z (2-93)

Using equation (2-76) and (2-77) it Is seen that the singularity occurs

when

-3/2 . (m-n) _ -1/2. (2-94)

a and n are Integers, therefore Ho (ZmIIS) is singular when mn-n * -1 or
Om n

when mun-1. A similar argument may be applied to show that H0  (ZmS)
Om n

is singular when mun and that N4o (z l,s) is singular when mun+l.

Ii 29



I,,

Following the procedure outlined by Tesche [23], let the integral of

HOm (zmss) at its singularity be T1.

I 1= HOM n (zms) when m-n, (2-95)

where H 'm n(Zms) is given by equation (2-88). Transform variables

In (2-88) as follows:

let 0 - +0'

z a zml z (2-96)

dz - -dz'

and the limits of integration become

z m zm z ni A-/2

zn+l - zM -zn+l m -&/2 (2-97)

m-n ronn

I Thus,

A y
I T * ( d~dz (2-98)

/0 r

2 d2  2where r- [z + d sin v/2)

Define *2 Ho (zM. 1,s) when m a P-1 (2-99)

00n

and T3 " H~n N(Z1 5S) when rm n+1 (2-100) .,.:

Sit can be shown that T1  T2  T3 .
Ii 30(j



Equation (2-98) may be prepared for numerical evaluation by following

a procedure similar to that used by Tesche [23]. A Maclaurin series

for e"yrl is as follows:

"Yrl r, 2Y2  rl 3Y3  n nn+

- yrI +-T-2 - ---- -+I W)n

.(-rlY)n
(2-101)

n=O

Using only the first two terms of (2-101) equation (2-98) may be

written as

T (1 YA2 ddz)- 21rAY (2-102)
A-2//2

2also J 2[( ) + sin2 21 ] i"2Jn(sin-)
! ls r = 2In d 2[•-)

ii (2-103)

and therefore

I 2 2

-2 f n(sin t.)d#) Vimr~. (2-104)
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The first term in the above equation is non-singular and can be evaluated

numerically, the second term is easily evaluated analytically be expressing

zn(sln +/2) in a series, that is,

In(sin */2) - -in 2 - • cos n# (2-105)n-1

so zn(sin #/2) -2%tn2- - 1 cos n~do (2-106)I ( n -

I Finally,

(½ j / tn[ + (Air))2 + sin 2 o/2 ]do

+ irCn 4 - Ay) . (2-107)
I I

The integro-differential equation has been cast as a system of

I matrices, which may be solved for the unknown induced current.

Application of the Singularity Expansion Method

The singularity expansion method (SEM). formalized by Baum [23-25],
and applied by many others [1-3J, [26], [27-30], is a method for charac-

terizing the response of scattering objects illuminated by either

transient or steady-state electromagnetic radiation. A general outline

describing the theory uf SEM will be presented with special attention

given to areas of interest.
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The time domain current may be determined from a knowledge of the

exterior natural resonant frequencies of the scatterer in much the same

manner as in classical circuit theory. The natural frequencies of the

"wire," s., are those such that the homogeneous version of equation

(2-84)

Y(s)T(s) - 0 (2-108)

has a non-trivial solution for I(s.). This implies that the determinant

of " must vanish at these complex natural frequencies; and therefore the

equation for determining these resonances becomes

dot 7(sa) a 0 (2-109)

"The natural frequencies must lie in the left-hand portion of the

s-plane since exponentially increasing currents are not allowed. Further,

the poles must occur in conjugate pairs since the time domain current is

real. No poles may reside on the Jw axis since the radiation process

requires that the current on the wire be eventually zero. It is assumed,

without proof, that the poles are all simple. This has been substantiated

numerically [30].

The matrix equation,

. •(s)T(s) - V(s) (2-110)

has as a solution

T(s) - 7-1 (sl(s). (2-111) ,,

3 3
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The time domain response is given by the inverse laplace transform

in the form

i(t) f (s)V(s)etds. (2-112)

Instead of numerically evaluating this integral along the o

contour, SEM assumes that the inverse of the impedance matrix may be

expressed as

"(S) " U (2-113)

This assumption allows evaluation of equation (2-112) by the Cauchy

Residue Theorem. Equation (2-113) is a summation over all poles in the

complex s-plane. R. is defined as the system residue matrix at the pole

s=. This residue matrix is a dyadic and can be represented as the outer

product of vectors independent of s as

SR'" fT (2-114)

where i4' is the natural mode vector and Is a solution to

0(sa)We a-0 (2-115)

and i ts the coupling vector, which satisfies the equation

" Tr 0 (2-116)

It3
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(T denotes transpose). For the electric field formulation, where the

impedance matrix is symmetric, i.e. (7(s.) = ZT(s)), the natural mode

vector and coupling vector are equal, and therefore

Let ' be normalized such that its maximum element is real and equal to

unity.

re [Ca 218
normalized

and define

normalized 
= W0

such that

Rol 001(I C(2-1 20)

0 0

where 0• is the normalization coefficient. SinceI •oo~o
-1 0 0

Z (s)- I -(2-121)

The normalization coefficient Is determined through consideration of a

pRrticular singularity [2], sp, such that

C Tr(s)r -I(s)-C T ý .. 212
P pP P Pp (212

I (NOTE: U" is the identity matrix.)
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Substituting equation (2-121) into (2-122) yields

c~~1 p p p

or

Q Zs)se C P,~ (2-123)S-Sco 1 .PP

Note that

p Tr-(5) u(T!P(sTk ( Cs (2-124)

so (2-123) may now be written as

EPTy~- _ (sp )),UT~
p& Tr~c (2-125)

s-s ?p p

By definition,

lim S p) * •,(Sp)•p1, (2-126)

P ti

where (svp
f And 6 is the Kronecker delta function. Taking the l1iit as s approaches

Sp in (2-125) results In

-C T. ( )UU. -C. -C'(2-127)
p p p pp p p p
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From whi, we conclude that

1 (2-128)

Finally.
o+jM

!:J- ds (2-129)
,o0.,1,

Iwhere N~ O.8 UTV
0

I

is defined as the coupling coefficient. With the matrix elements of

I V(s) defined by (2-85), let the incident field be a step-function plane

wave, such that

E°(s)" E°/s

The matrix elements of V(s) are then defined as

It l "Y~m Rve2h s in

lI vmaS 4wcJEO sln- ee [! - sin 0e (2-130)

where M a 2,3,..., N-l;

Evaluating (2-129) through the residue theorem will produce appropriate

j Heaviside functions, which are viewed as enforcing causality [30], [1-3].

The exponential dependence of (2-129) is expressed by

yeSt DoYZm[ 1 " Rve-y2h sin jeeSt (2-131)

- (i 37H H, V 4



where

D -4wO 0E sine.

Equation (2-131) can be written as

st sit -Zm/C3

vemt e D e -R e (2-132)

And now (2-129) becomes

1(t)( S-00 V(s)ds (2-133)
St () - -• £ s-S

7,(s) is a vector with matrix elements defined by (2-132). Stated more

sifmply,

Iwl Vt (s) LvmeSt] StV(s)est (2-134)

If we let

Z M/c (2-135)

z + 2h siner and m - (2-136)

Then the matrix elements of V.(s) are

5 D. e 9(t.-KI s(t-T 2)
viest -Die -Rye 2 ]. (2-137)

Evaluation of (2-133) may be carried out by using the residue theorem.
:• I• ~~318,.t



Note that the complex natural frequencies, natural mode vectors,

and normNalization coefficients are tiot functions of the incident field.

Only V•(t) is altered upon a change In the angles of incidence. Conse-

quently, once s., o., and f0are found for a particular L, h, and a,
0

the current excited by any incident field is easily found.

The singularity expansion method, applied to this transient electro-

magnetic problem, produces a system of matrices, which are solved for

the induced current on the object cylinder as a function of time.

Approximations and Limitations

A sunmary of the approximations used thus far will be presented

so that the results obtained may be viewed in the proper perspective.

The assumptions and approximations are:

1. Current is assumed to flow only in the direction of the cylinder

axis.

2. Boundary conditions are enforced only on the axial component

) of the tangential electric field.

3. End caps on the cylinder are ignored.

4. Current is assumed to be uniformly circumferentially distributed.

5. The moment method is an approximate numerical solution.

6. The "T" function, equation (2-107), for evaluating the singular

Integral is an approximate solution.

7. The reflection method does not account for the currents induced

in the earth.

Assumptions one and two require that the cylinder be thin, L > a.

The third assumption is valid if a t< X, this Is seen to be, because
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current induced on the end caps will not significantly contribute to the
scattered field [31). Uniform circumferential variation of the current

is a valid approximation when the cylinder is many radii away from the

ground plane. The assumptions involved in Tesche's solution for the T

I function places two restrictions on the problem (23. The main restriction

requiring L >> a, and secondly this formulation is not applicable to

high frequency analysis.

The reflection method, although valid when the cylinder is located

far from the ground plane, is not valid when the cylinder is close to

the ground plane. Additional terms must be added to the equations to

account for the "surface wave" [14]. The term surface wave as used here

is as defined by Norton [32]. In a dissertation by Jerry McCannon D6],

I a study was done of a vertical dipole using several different formulations.

The reflection method was found to give answers within 1 to 2 percent

i of the exact solution when the height of the dipole was greater than

I j 3/8 X.
In a recent investigation by Sarkar arid Strait DO], it was foundI '

that the reflection method for the horizontal electric dipole produced

results within 10% of the exact Sommerfeld formulation if

where

h - height of the dipole above the ground plane

- relative permittivity of ground plane

- free space wave length.
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Throughout this study an average of 15 was used for •r' relative

peruittttvity of earth in this case, which results In h > .065 ).
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* Ill. NUMERICAL RESULTS

A computer code has been written to implement the equations developed

in the previous section. This code is used to determine the natural

resonances and natural mode vectors of the scatterer. The scatterer, is

described by a general length, radius, and height above the ground

plane. The finitely conducting ground plane, assumed nonmagnetic P - Poo

is characterized by o, the conductivity, and c - cOCr the permittivity.

Singularities, i.e.(natural resonances), occur in layers in the complex

plane ani will be described by sL,n where "V' denotes the layer of the

pole and "n" the pole within the layer, this method of description is

that used by Tesche [30]. This data will present trajectories of the

first three poles of the first layer, Sll, 512- and s13.

Figure 3-1 shows the movement of the singularity Sll in the complex

plane as several system parameters are varied. The outer dashed spiral

through the points labeled A describes the movement of the pole Sl as

the scatterer is brought near the ground plane, the conductivity is held

U( constant at o a 120.0 Along this curve. It may be concluded that the Q

of the scatterer stabilizes as h/L becomes large since the dashed spiral

seems to become confined to a smaller area in the s-plane. For each

value of h/L. the conductivity is varied from a - 120, point A on the

Ii dashed curve, to a w 1.2 x 10-4, point G; intermediate values are shown

I at points B through F. The value a 1.2 x 10"3 and ao- 1.2x 10-2

at points E and F respectively correspond to typical values of conductivity
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for normal terrain. Let the paths traversed by the pole for a given

I value h/t be called the inner spirals. It Is seen that each Inner

spiral, corresponding to a given value of h/t, converges to point G

as the conductivity of the ground plane is reduced, this result is to be

I expected since point G is the location of sll for free space conditions

[29]. When the pole is displaced from position G along one of the inner

spirals more energy is being reflected from the ground plane, this

follows from the fact the incident illumination experiences a greater

discontinuity as the value of a is increased. In the limit as a becomes

1 very large all the incident energy would be reflected and the problem

becomes that of a cylindrical scatter over a perfectly conducting

ground plane. Figure 3-2 is also a plot of sll as the value of h/i

and a vary, the relative permittivity is held at five. Unlike Figure

3-1. point G is not the same in the limiting case of small a, but

rather each inner spiral converges to some point along an Inner dashed

spiral. Although the conductivity becomes small the relative permittivity

14 remains at five, thus the incident wave will meet some discontinuity

and there will be energy reflected from the ground plane. Figures 3-3

and 3.4 display similar information as described above. In Figure 3-3

and M4 the relative permittivity is fifteen and one hundred respectively,

as o again gets small point B is further from that of the free space

position due to the larger values of cr. To summarize, displacement

pi of the singularity from 'its free space position is a function of the

magnitude of discontinuity in the ground plane whether it be produced

[ iby the conductivity or relative permittivity. Figures 3-5 through 3-8
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may be interpreted similarly. Note that In Figures 3-5 and 3-7 the

inner spirals cross the outer dashed spiral, this is most probably due

to numerical error. When the method of moments is employed, a rule of

thumb is to choose the number of zones, N, in accordance with

IN -10 x sL/wc. This implies that if s - Jw, ten cells per half-

wavelength are used [30]. This rule was adhered to for pole s~l, the

first resonance of the scatterer, but N was not changed for s1 2, or

s13 this means that there were only 5 zones per half wavelength for

s12, and 3 zones per half wavelength for s13*

I The real and imaginary part of the normalized mode vector for the

singularities s11, and s12, are shown in Figures 3-9 through 3-12. Note

that the modes are either even or odd functions about the scatterer

' I midpoint. It is also seen that the imaginary part of the mode vector

is much less than the real part, indicating the modes are almost real

II functions of position. The conductivity and relative permittivity were

also varied when calculating the normal mode vectors, results showed the

normal mode vectors being relatively independent of these quantities.
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